

Vapor-Diffusion-Mediated Single Crystal-to-Single Crystal Transformation of a Discrete Dimeric Copper(II) Complex to a Discrete Tetrameric Copper(II) Complex

Shaikh M. Mobin,^{†,‡} Ashwini K. Srivastava,*[‡] Pradeep Mathur,*[†] and Goutam Kumar Lahiri*[†]

[†]National Single Crystal X-ray Diffraction Facility and Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India, and [‡]Department of Chemistry, University of Mumbai, Vidyanagari, Mumbai 400098, India

Received March 16, 2009

The symmetric dimeric complex $[Cu(\mu_2-hep)(TFA)(H_2O)]_2$ (1) has been synthesized from 2-(2-hydroxyethyl)pyridine (hep-H), trifluoroacetic acid (TFA-H), and copper acetate in a 95:5 (v/v) MeOH-H₂O mixture at 298 K. Each Cu^{II} ion in 1 is linked with two μ_2 -alcoholic oxygen atoms and one pyridine nitrogen atom of hep, and the other two coordination sites are occupied by the oxygen donors of TFA and H₂O. At room temperature, the blue single crystals of 1 transform to the green single crystals of a tetrameric complex, $[Cu_4(\mu_3-hep)_2(\mu_2-hep)_2(\mu_2-TFA)_2(TFA)_2]$ (2), in presence of alcoholic vapor. The facile single crystal-to-single crystal (SCSC) transformation of 1 to 2 is accompanied by the removal of coordinated H₂O molecules in 1 and concomitant formation of four new covalent bonds, two $Cu-O(\mu_3-hep)$ and two Cu $-O(\mu_2$ -TFA). The SCSC transformation of 1 to 2 is selective to the alcoholic vapor; the exposure of single crystals of 1 to heat or light or in vacuum has resulted in an immediate loss in crystallinity.

The transformation of discrete or polymeric molecular frameworks at the single crystal-to-single crystal (SCSC) level is a fast-emerging topic in chemical sciences.¹ Such a phenomenon has potential applications in catalysis,^{2a,2b} magnetism,^{2c,2d} and the design of sensing devices.^{2e,2f} The SCSC

transformation, which retains crystallinity, can primarily be achieved via the influence of either temperature or light or by a simple vapor-diffusion technique. Although SCSC transformations by the aid of heat³ or light⁴ are known, to the best of our knowledge, there exist only two examples of nonporous gas-solid-mediated SCSC transformation.⁵ One is a reversible exchange of a coordinated solvent molecule in a trinuclear iron complex from water to methanol to water at room temperature without changing the structural motif,^{5a} and the second is an irreversible SCSC transformation from a trimeric copper complex to its monomeric analogue.^{5b} In the latter case, the single crystals in the mother liquor were used for the vapor-diffusion process. Heat- and light-mediated SCSC transformations involving coordination polymers and networks of cadmium, nickel, manganese, and cobalt with special emphasis on molecular helicity, structural integrity, and magnetism have been reported recently.^{6,7}

(5) (a) Supriya, S.; Das, S. K. J. Am. Chem. Soc. 2007, 129, 3464. (b) Sah, A. K.; Tanase, T. Chem. Commun. 2005, 5980.

^{*}To whom correspondence should be addressed. E-mail: aksrivastava@ chem.mu.ac.in (A.K.S.), mathur@iitb.ac.in (P.M.), lahiri@chem.iitb.ac.in (G.K.L.).

^{(1) (}a) Vittal, J. J. *Coord. Chem. Rev.* **2007**, *251*, 1781. (b) Hanson, K.; Calin, N.; Bugaris, D.; Scancella, M.; Sevov, S. C. *J. Am. Chem. Soc.* **2004**, *126*, 10502. (c) Kitaura, R.; Onoyama, G.; Sakamoto, H.; Matsuda, R.; Noro, S.-L.; Kitagawa, S. *Angew. Chem., Int. Ed.* **2004**, *43*, 2684. (d) Lee, E. Y.; Jang, S. Y.; Suh, M. P. *J. Am. Chem. Soc.* **2005**, *127*, 6374. (e) Takaoka, K.; Kawano, M.; Tominaga, M.; Fujita, M. *Angew. Chem., Int. Ed.* **2005**, *44*, 2151. (f) Dybtsev, D. N.; Chun, H.; Kim, K. *Angew. Chem., Int. Ed.* **2004**, *43*, 5033.

^{(2) (}a) Pan, L.; Liu, H.; Lei, X.; Huang, X.; Olson, D. H.; Turro, N. J.; Li, J. Angew. Chem., Int. Ed. 2003, 42, 542. (b) Sawaki, T.; Aoyama, Y. J. Am. Chem. Soc. 1999, 121, 4793. (c) Zhang, J.-P.; Lin, Y.-Y; Zhang, W.-X.; Chen, X.-M. J. Am. Chem. Soc. 2005, 127, 14162. (d) Kim, Y.; Jung, D. P. Inorg. Chem. 2000, 39, 1470. (e) Suh, M. P.; Moon, H. R.; Lee, E. Y.; Jang, S. Y. J. Am. Chem. Soc. 2006, 128, 4710. (f) Choi, H. J.; Suh, M. P. J. Am. Chem. Soc. 2004, 126, 15844.

^{(3) (}a) Niel, V.; Thompson, A. L.; Muoz, M. C.; Galet, A.; Goeta, A. E.; Real, J. A. Angew. Chem., Int. Ed. 2003, 42, 3760. (b) Cheng, X.-N.; Zhang, W.-X.; Chen, X.-M. J. Am. Chem. Soc. 2007, 129, 15738. (c) Mahmoudi, G.; Morsali, A. Cryst. Growth Des. 2008, 8, 391. (d) Ranford, J. D.; Vittal, J. J.; Wu, D.-Q.; Yang, X.-D. Angew. Chem., Int. Ed. 1999, 38, 3498. (e) Iordanidis, L.; Kanatzidis, M. G. J. Am. Chem. Soc. 2000, 122, 8319. (f) Vittal, J. J.; Yang, X.-D. Cryst. Growth Des. 2002, 2, 259. (g) Hu, C.; Englert, U. Angew. Chem., Int. Ed. 2005, 44, 2281. (h) Maji, T. K.; Mostafa, G.; Matsuda, R.; Kitagawa, S. J. Am. Chem. Soc. 2005, 127, 17152.

^{(4) (}a) Toh, N. L.; Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed. 2005, 44, 2237. (b) Ouyang, X.; Fowler, F. W.; Lauher, J. W. J. Am. Chem. Soc. 2003, 125, 12400. (c) Papaefstathiou, G. S.; Zhong, Z.; Geng, L.; MacGillivray, L. R. J. Am. Chem. Soc. 2004, 126, 9158.

^{(6) (}a) Nagarathinam, M.; Vittal, J. J. Macromol. Rapid Commun. 2006, 27, 1091. (b) Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed. 2006, 45, 4337. (c) Sampanther, T.; Vittal, J. J. Cryst. Eng. 2000, 3, 117. (d) Yang, X. D.; Wu, D.; Ranford, J. D.; Vittal, J. J. Cryst. Growth Des. 2005, 5, 41. (e) Yalpani, M.; Scheidt, W.; Seevogel, K. J. Am. Chem. Soc. 1985, 107, 1684. (f) Halder, G. J.; Kepert, C. J. J. Am. Chem. Soc. 2005, 127, 7891. (g) Nagarathinam, M.; Vittal, J. J. Chem. Commun. 2008, 438. (h) Nagarathinam, M.; Puthan, A. M.; Vittal, J. J. Chem. Commun. 2008, 5277.

^{(7) (}a) Li, H.; Eddaoudi, M.; O'Keefe, M.; Yaghi, O. M. *Nature* 1999, 402,
276. (b) Kepert, C. J.; Prior, T. J.; Rosseinsky, M. J. J. Am. Chem. Soc. 2000,
122, 5158. (c) Lee, E. Y.; Suh, M. P. Angew. Chem., Int. Ed. 2004, 43, 2798.
(d) Kim, J. H.; Hubig, S. M.; Lindeman, S. V.; Kochi, J. K. J. Am. Chem. Soc. 2001, 123, 87.

Communication

In this Communication, we report a unique example of the facile SCSC transformation of a discrete dimeric copper(II) complex, $[Cu(\mu_2-hep)(TFA)(H_2O)]_2(1)$, to a discrete tetrameric copper(II) complex, $[Cu_4(\mu_3-hep)_2(\mu_2-hep)_2(\mu_2-TFA)_2(TFA)_2]$ (2; hep-H = 2-(2-hydroxyethyl)pyridine and TFA-H = trifluoroacetic acid) by the application of a simple vapor-diffusion technique at room temperature (Scheme 1 and the Supporting Information, SI).

In general, solvent-vapor-mediated transformation of crystal structures are not unusual, as is observed in many complexes showing vaporchromism behavior, 1f,5,8 in which the solvent molecules are trapped in the crystal. However, in the present case, the alcoholic vapor assists the removal of H₂O molecules from the crystal of **1**, leading to an unprecedented and interesting SCSC transformation.

The dimeric complex 1 has been synthesized by the reaction of hep-H and TFA-H with a methanolic solution [95:5 (v/v) MeOH $-H_2O$ mixture] of copper acetate at room temperature for 6 h (SI). The use of pure water or dry methanol did not yield any 1.

The solid-state structure of 1 (Tables S1 and S2 in the SI) has been confirmed by single-crystal X-ray diffraction studies⁹ (Figure 1).

1 crystallizes in the monoclinic C2/c space group with a crystallographically imposed inversion center. Both Cu^{II} ions are in a symmetric pentacoordinated (CuO4N) environment, firmly bound by two μ_2 -alcoholic oxygen atoms and one pyridine nitrogen atom of hep; the remaining two coordination sites at each copper ion are occupied by the oxygen donors of acetate (TFA) and H₂O molecules.

The core structure is further stabilized by the formation of a central four-membered planar Cu_2O_2 ring (Figure 1). Three Cu–O bond distances are observed: Cu1–O1 1.933(3) Å; Cu1–O2 1.951(3) Å; Cu1–O4 2.290(3) Å. The axial position is occupied by the O4 atom of the H₂O molecule with an elongated Cu1–O4 distance, resulting in a distorted square-pyramidal geometry with built-in Jahn–Teller distortion. The copper ions in **1** are separated by 3.047 Å.

Moreover, the hydrogen atoms of the coordinated H₂O molecules in 1 form moderately strong hydrogen bonds¹⁰ (H···O = 1.958-2.102 Å; O-H···O = $170-172^{\circ}$) with the acceptor oxygen atoms of the free carbonyl group of TFA and hep, leading to the formation of a tetrameric cluster core, as shown in Figure 2 (Table S3 and Figure S1 in the SI).

The formation of such a hydrogen-bonded tetrameric feature via interactions between the coordinated solvent H_2O molecules and the ligands hep/TFA in the crystal

(9) Crystal data for 1: $C_{18}H_{20}N_2O_8F_6Cu_2$, M = 633.44, monoclinic C2/c, Z = 4, T = 150(2) K, F(000) = 1272, a = 13.89(2) Å, b = 15.8882(12) Å, c = 10.763(12) Å, $\beta = 97.85(16)^\circ$, V = 2352(5) Å³, $D_c = 1.789$ mg/m⁻³, μ (Mo K α) = 1.902 mm⁻¹, size = 0.34 × 0.30 × 0.28 mm³, GOF = 1.102, rflections collected/unique, 6630/2076 [R(int) = 0.0165], R1 [$I > 2\sigma(I)$] = 0.0232, wR2 = 0.0571, R indices (all data) R1 = 0.0271, wR2 = 0.0586. Crystal data for **2**: $C_{36}H_{32}N_4O_{12}F_{12}Cu_4$, M = 1194.83, monoclinic, $P_{21/n}$, Z = 2, T = 150(2) K, F(000) = 1192, a = 8.5271(14) Å, b = 21.778(4) Å, c = 11.465(2) Å, $\beta = 90.710(17)^\circ$, V = 2129.0(7) Å³, $D_c = 1.864$ mg/m⁻³, μ (Mo K α) = 2.089 mm⁻¹, size = 0.32 × 0.28 × 0.25 mm³, GOF = 0.891, reflections collected/unique, 18744/3740 [R(int) = 0.1470], R1 [$I > 2\sigma(I)$] = 0.0501, wR2 = 0.0772, R indices (all data) R1 = 0.1115, wR2 = 0.0921. CCDC CIF deposition numbers: 661087 and 701543 for 1 and 2, respectively.

Figure 1. Thermal ellipsoid plot of 1 with 50% probability.

Figure 2. Hydrogen-bonded tetrameric feature of 1.

Scheme 1. SCSC Transformation of **1** (*Blue* Crystals) to **2** (*Green* Crystals)

structure of 1 (Figure 2) prompted us to explore the effect of exposing 1 to the vapors of alcohols, ROH ($R = Me, Et, {}^{i}Pr$). Upon exposure of the blue single crystals of 1 to various alcohols (Figure S2 in the SI), the color of the crystals changed to green. The subsequent structural analysis of the resultant green crystals reveals its identity as a tetrameric copper complex 2 (Figure 3).

Attempts to synthesize 2 independently from the powdered bulk sample of 1 in dry alcohol or acetonitrile, however, failed altogether (see the SI). Moreover, under the vapordiffusion process, the expected direct exchange of a coordinated H₂O molecule in the single crystal of 1 by CH₃OH, as has been reported in the case of trinuclear [Fe₃(μ_3 -O)(μ_2 -CH₃COO)₆(C₅H₅NO)₂(H₂O)]ClO₄·3H₂O = Fe₃(μ_3 -O)(μ_2 -CH₃COO)₆(C₅H₅NO)₂(MeOH)]ClO₄·3H₂O,^{5a} did not take

^{(8) (}a) Kitagawa, S.; Uemura, K. Chem. Soc. Rev. 2005, 34, 109.
(b) Rather, B.; Zaworotko, M. J. Chem. Commun. 2003, 830. (c) Chen, C.-L.; Goforth, A. M.; Smith, M. D.; Su, C.-Y.; zur Loye, H.-C. Angew. Chem., Int. Ed. 2005, 44, 6673.

⁽¹⁰⁾ Rowland, R. S.; Taylor, R. J. Phys. Chem. 1996, 100, 7384.

Figure 3. Thermal ellipsoid plot of 2 with 50% probability.

place. This is most likely because of the faster rate of coordination of the suitably configured pendent carbonyl function (-C=0) of the bonded TFA (anti to the H₂O molecule) in **1** than that of the external MeOH from the vapor to the vacant Cu centers developed by the removal of coordinated H₂O molecules in the neighboring two dimeric **1** (Scheme 1). This indeed led to the irreversible formation of the tetrameric core of **2**.

2 possesses a monoclinic $P2_1/n$ space group with a crystallographically imposed inversion center (Tables S1 and S2 in the SI). The SCSC transformation of **1** to **2** via the removal of coordinated H₂O molecules in **1** is found to be selective with protic alcoholic solvents such as methanol, ethanol, or isopropyl alcohol. No such transformation was found to take place with nonprotic solvents such as *N*,*N*-dimethylformamide, dimethyl sulfoxide, or tetrahydrofuran even at higher temperatures. However, partial conversion of **1** to **2** has been observed in acetonitrile but with a loss in crystalinity. Single crystals of **1** are found to be stable at ambient conditions. Exposure of **1** to heat, light, or vacuum resulted in green **2** but with *immediate loss in crystallinity*.

The SCSC transformation of 1 to 2 is accompanied by the breaking of Cu–O(H₂O) bonds in 1. Concomitant formation of four new covalent bonds, two Cu–O(μ_3 -hep) and two Cu–O(μ_2 -TFA) (Scheme 1), prevents the backward SCSC process of 2 to 1 upon exposure of the crystals of 2 to the water vapor.

The tetranuclear copper(II) complex, 2, is composed of four monoanionic hep and four trifluoroacetate ligands. The central Cu₄O₄ unit in **2** is arranged in a chair-like conformation (Figure S3 in the SI), as has been observed earlier in hydroxy-bridged copper tetramer {[Cu(bpy)(OH)]₄Cl₂}- $Cl_2 \cdot 6H_2O^{11}$ The Cu1 atom in 2 exhibits square-pyramidal geometry (4 + 1): one nitrogen atom from hep, two oxygen atoms from μ_3 -hep, one oxygen atom from μ_2 -hep, and one oxygen atom from μ_2 -TFA. The Cu2 ion in **2** also exhibits square-pyramidal geometry (4 + 1) with a different coordination mode: one nitrogen atom from hep, one oxygen atom from μ_3 -hep, one oxygen atom from μ_2 -hep, one oxygen atom from μ_2 -TFA, and one oxygen atom from monodentate TFA. The Cu-N distances in 2 vary slightly; however, reasonable variations in the Cu-O distances are observed depending on their connectivities (Table S2 in the SI). If the weak interactions are ignored, the transformation of 1 to 2 is a 0D-to-0D structural transformation (Figure S4 in the SI). In the SCSC transformation of 1 to 2, alcohol plays a significant role in removing the coordinated H₂O molecule from 1, which, in turn, facilitates the formation of new Cu–O covalent bonds in 2. The IR spectrum of 2 is similar to that of 1 except that the O-H vibration of coordinated H₂O molecules in 1 is absent in 2 (Figure S5 in the SI). In addition, the TGA of 1 under N₂ reveals a weight loss of $\sim 4\%$ in the temperature range of 50-120 °C corresponding to the loss of two coordinated H₂O molecules, whereas no such weight loss in TGA was detected for **2** up to 150 °C (Figure S6 in the SI).

In conclusion, the present work demonstrates a unique example of a facile gas-solid-mediated SCSC transformation of a discrete dimeric copper(II) complex ($\mathbf{1} = blue$ crystal) to a discrete tetrameric copper(II) complex ($\mathbf{2} = green$ crystal) via the removal of coordinated H₂O molecules in **1** and concomitant formations of new μ_2 -O (TFA) and μ_3 -O (hep) covalent bonds with Cu in **2**. The SCSC transformation of **1** to **2** is selective in protic alcoholic solvents. The observed significant structural changes in moving from **1** to **2** at the SCSC level can be considered as a promising synthon toward the design of newer classes of versatile multifunctional crystalline materials.

Supporting Information Available: Experimental procedures and structural and spectral details of **1** and **2**. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹¹⁾ Zheng, Y.-Q.; Lin, J.-L. Z. Anorg. Allg. Chem. 2002, 628, 203.